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Abstract—In this paper, we consider the problem of spectrum
sensing by using multiple antenna in cognitive radios when the
noise and the primary user signal are assumed as independent
complex zero-mean Gaussian random signals. The optimal multi-
ple antenna spectrum sensing detector needs to know the channel
gains, noise variance, and primary user signal variance. In
practice some or all of these parameters may be unknown, so we
derive the Generalized Likelihood Ratio (GLR) detectors under
these circumstances. The proposed GLR detector, in which all the
parameters are unknown, is a blind and invariant detector with a
low computational complexity. We also analytically compute the
missed detection and false alarm probabilities for the proposed
GLR detectors. The simulation results provide the available
traded-off in using multiple antenna techniques for spectrum
sensing and illustrates the robustness of the proposed GLR
detectors compared to the traditional energy detector when there
is some uncertainty in the given noise variance.

Index Terms—Cognitive radio, spectrum sensing, multiple
antenna, eigenvalue decomposition, opportunity detection, GLR
detector, noise variance mismatch.

I. INTRODUCTION

ECENT measurements reveal that many portions of

the licensed spectrum are not used during significant
time periods [1]. Since the number of users and their data
rates steadily increase, the traditional fixed spectrum policy
is inefficient and is no longer a feasible approach. One
proposal for alleviating the spectrum scarcity is allowing
licence-exempted Secondary Users (SU) to exploit the unused
spectrum holes over some frequency ranges by using Cognitive
Radio (CR) technology [2]. One of the major challenges of
implementing this technology is that the CRs must accurately
monitor and be aware of the presence of the Primary Users
(PUs) over a particular spectrum. To address this challenge,
several efficient methods have been proposed [3]-[7]. In [7]
the spectrum sensing in a wideband Orthogonal Frequency
Division Multiplexing (OFDM) scenario, when the received
power of PU is unknown and there are different amount of
the priori knowledge about PU signal, has been investigated.
The Energy Detector (ED) (a.k.a. radiometer) is a common
method to detect an unknown signal in additive noise [8].
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This method is optimal for white Gaussian noise if the noise
variance is known. Unfortunately, the performance of the ED
is susceptible to errors in the noise variance [9]. It has been
shown that to achieve a desired probability of detection under
uncertain noise variance, the Signal-to-Noise Ratio (SNR) has
to be above a certain threshold [10]. For the case of unknown
noise variance, the cyclostationarity property of communi-
cation signals is exploited in [5], [11], [12]. In contrast to
noise, which is a wide-sense stationary random signal with
impulse autocorrelation function, in general, the modulated
signals have the periodical mean and autocorrelation function.
These features can be used to distinguish the noise from the
modulated signal. The drawbacks of this method are that the
method requires a significantly long observation time and is
highly computationally complex for practical implementation.

While there has been an intensive work on the spectrum
sensing problem in the case of known noise variance, not
enough attention has been made to the spectrum sensing under
unknown noise variance except [10], [13]-[15].

Multiple antenna techniques currently are used in commu-
nications and their effectiveness have been shown in different
aspects [16]. In the context of dynamic spectrum sharing,
multiple antenna SU can be used for a reliable signal trans-
mission and also spectrum sensing. In fact, using multiple
antenna techniques in CRs is one of possible approaches for
the spectrum sensing by exploiting available spatial domain
observations and has been proposed in [17]-[19]. In [17],
the authors have shown the efficiency of multiple antenna
spectrum sensing in terms of required sensing time and
hardware by using a two-stage sensing method. In [18],
the ED has been proposed for spectrum sensing by using
multiple antennas. The PU signal has been treated as an
unknown deterministic signal and based on this model the
performance of the energy detector has been evaluated in
Rayleigh fading channels. In [19], it has been shown that a
multiple antenna OFDM based CR scheme, when using the
square law combing energy detector, has better performance
than the single antenna scheme, even at low SNRs. In [20], a
blind energy detector based on SNR maximization has been
proposed and its performance has been evaluated in difference
cases.

In this paper, we investigate the spectrum sensing problem
by using multiple antennas when the PU signal can be well
modeled as a complex Gaussian random signal in the presence
of an Additive White Gaussian Noise (AWGN). We derive the
optimum detector structure for spectrum sensing and investi-
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gate its performance. The optimal detector needs to know the
noise and PU signal variances, and also the channel gains. In
practice one or more of these parameters may be unknown, so
in what follows we derive the Generalized Likelihood Ratio
(GLR) detector when some or all of these parameters are
unknown.

The remaining of the paper is organized as follows. In
Section II, we describe the system model and the basic as-
sumptions about the PU signal, noise, and channel gain vector.
Conditioned on knowing the noise and PU variances and
channel gain vector, we derive the optimal multiple antenna
detection rule and evaluate its performance analytically. In
Section III, we derive the GLR detectors for three cases,
namely, unknown channel gain, unknown channel gain and
the PU signal variance, and finally unknown all the afore-
mentioned parameters. In this Section, we also show that the
GLR detector when all of the parameters are unknown, is an
invariant detector. In Section IV, we evaluate the performance
of the proposed GLR detectors analytically. In Section V, we
present some numerical results to evaluate the performance
of the GLR detectors based on both analytical derivations
and simulations, and investigate the available tarde-offs in
the GLR detector performance. Also in order to evaluate the
performance of the proposed GLR detectors in a practical
scenario, we compare the performance of the GLR detectors
with the cyclostionarity based detector and ED, when the PU
signal is considered as a DTV signal in IEEE 802.22 standard.
Finally, Section VI concludes the paper.

Throughout this paper, we use boldface letters for column
vectors and boldface capital letters for matrices. We also de-
note Xy, = [X|, Xk, = [X]k,, and X = [X]x, respectively,
as the elements of a vector x, the elements of a matrix X, and
the kth row of a matrix X. We use the notation Z to denote
the estimation of unknown parameter z, which may be scalar,
vector or matrix.

IT. BASIC ASSUMPTIONS AND OPTIMAL DETECTOR

Suppose that the SU has M receiving antennas and each
antenna receives L samples as shown in Figure 1. We assume
that the PU signal samples are independent zero-mean random
variables with complex Gaussian distribution. This assump-
tion, for instance, is valid for an OFDM signal in which each
carrier is modulated by independent data streams. We denote
the hypothesis of the PU signal being active and inactive
(within the range of the CR) by H, and H;, respectively. We

assume that the additive noise samples at different antennas are
independent zero-mean Gaussian random variables. Under H,
we assume that the PU signal and noise are independent. Let
Y = [y, --,yr] € CM*E be a complex matrix containing
the observed signals at M/ antennas. The multiple antenna PU
detection problem can be expressed as the following binary
hypothesis test:

Ho: Y ~ CN(0,021) if the PU is inactive, )
Hi: Y ~ CN(0,02hh* + 621),) if the PU is active.

where h € CM*! denotes the channel gain vector between
the PU and M antennas, and o2 and o2 are the variances of
noise and PU signal, respectively. We assume that the channel
gain vector, i.e., h, is a constant parameter at each sensing
time. For the optimal detection, the channel gain vector is
assumed to be known, and for the other practical detections,
we assume that the channel gain is unknown and we estimate
this unknown parameter, as will be discussed in the following
subsections.

A. Optimal Detector

For the optimal detector, the SU knows the channel gains,
noise and PU signal variances. In this case, from (1), under Hg
the Probability Density Function (PDF) of observation matrix,
Y, is as follows [21]:

L

1 1
H (7_(_0_2)”[ exp _O__le yi

=1
L
1 1 .
(770'1%)]\/[[/ exp {_g ZYZ YZ}

f(Y5 Ho, O-’?L)

where tr(.) denotes the trace of the matrix. By taking log-
arithm of PDF of observations under hypothesis Ho, i.e.,
Lo(Y) =1n f(Y;Ho,02), we will have:

B tr(YYH)

2
Ohn

Similarly, from (1) under the hypothesis 1, the PDF can be
written as [21]:

Lo(Y) = — MLInm — MLlno?2. (3)

L
f(Y;'Hl,h,O'i,O'g) - H
=1
exp {— Y ylHR_l}’l}
7MLdet(R)E
exp {—tr(R'YYH)}

B im0 P

exp {—y/R 'y, }
mMdet(R)

where R 2 E[YY#|H;] = 02hh® + 621 is the covariance
matrix. We can easily show that det(R) = (c2|h||®> +
02)(02)M=1) and also by using the matrix inversion lemma
[22], we obtain:

, hh#

R'=0T-0,?5—"—.
%+ np

(&)
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By taking the logarithm from (4) and denoting £1(Y) =
In f(Y;Hi1,h,02,02), we obtain:

L£1(Y) = —tr(R'YYH)- MLlnn (6)

—LIndet(c?||h|?> +¢2) — L(M — 1)Ino2,
which substituting (5) in (6) results in:
tr(YYH) |hY |2

Li(Y) = - +— (7
% (% + [n]?)o

2
— MLlnw— Lin(Z|h)? + 1) - LM Ino?.
U’Vl
For optimal detector in Neyman-Pearson sense, we need to
compare the Likelihood Ratio (LR) function or Logarithm of
Likelihood Ratio (LLR) function with a threshold. From (6)
and (3), the LLR function is equal to:

f(YaHhh 057031)
f(Y’H()? n)

L1(Y) — Lo(Y)

[h Y2

= ey~ LS
(Z + [|h2)02

LLR = In

thl2 +1). (8

Comparing the LLR function with a threshold results in the
following optimal decision rule:

h7Y]|? (Tg Ha
U2H—H — LIn(=%|h*+1) = n. )
(55 + [[h[]*)o T Ho

Where 7 is the decision threshold. Considering that in optimal
detector, the channel gains and noise and PU variance are
known, with some straightforward simplifications, the optimal
decision rule can be rewritten as follows:

Hi
Topt = [IN"Y|* 2 1, (10)
Ho
A m+Lin(Zs HhH +1) .
where n = = ”h” s denotes the detection threshold.
-

In general, the aetectlon threshold 7 is obtained by solving
F(n) = 1— P, where P, denotes the false alarm probability
and F'(z) is the Cumulative Distribution Function (CDF) of
the decision statistic. Also, it is possible to find this threshold
by Monte-Carlo simulation method. From (10), the optimal
detector is a maximum ratio combiner, which gives weights
to the observations at the different antennas according to their
corresponding channel gains, where the antenna with better
reception has more contribution in the summation in (10).

In the context of dynamic spectrum sharing, the false alarm
probability Py, indicates the probability that a spectrum hole
(a vacant band) is falsely detected as an occupied band, i.e.,
Pr, represents the percentage of the spectrum holes which
are not used. Therefore, the SUs must reduce the false alarm
probability P, as much as possible. On the other hand, the
missed detection probability, i.e., P, = 1 — Py, determines
the probability that an occupied band is mistakenly detected
as a spectrum hole. Such a missed detection induces harmful
interference for PU. Thus, the missed detection probability
must be small enough to avoid perceptible performance loss
for the PU.

B. Performance of Optimal Detector

To evaluate the performance of the optimal detector, we
first compute the Complementary Cumulative Distribution
Function (CCDF) of the decision statistic under Hy and H;.
Under hypothesis Hy, we notice that the elements of the
observed matrix are i.i.d. Gaussian variables with zero mean
and variance of 02, ie. Y ~ CN(0,02I). As a result,
conditioned on channel coefficients, the random vector h”'Y’
has a Gaussian distribution,i.e., h?Y ~ CAN(0,||h|[?021}).
Then, from (10), the decision statistic under hypothesis Hg
has the following distribution:

TOPt(Y) _
[h[|?o3

BTYE
Moz~

(1)

Therefore, the false alarm probability P, is easily obtained
using CCDF of T, (Y) as follows [14]:

]Dfa - P[Topt(Y) > 77|/HO]

L) -
where I'(a,z) = [ t*"le'dt and T'(a) = [~ t* e 'dt
are the upper incomplete and complete gamma functions,
respectively.
Similarly under hypothesis #H;, we have Y ~
CN(0,02hh# + 02I). Then, again conditioned on the
channel coefficients, we easily conclude that

hAY ~ CN (0, ||h[*(|h]?0? + o2)1L), (13)
and hence from (10)
Topt (Y hiY|?

(203 +o2) — [hl*(Ih]0? +03)

Therefore, the detection probability P, is easily evaluated as
follows

Py = PlTop(Y) > nlHi]
n
T (L’ nhn?(nhn?ozwa)) as)
I'(L) ’
which if we define the received SNR at the SU as 7 Y f\l?HQ’
the detection probability can be written as: o
n
b I (L’ Hhuzoa(m)) 6
‘ T(L)

III. GLR DETECTORS

The optimal detector needs to know the values of channel
gains, noise and PU variances. In practice, we may have no
knowledge about the values of some or all of these parameters.
In these cases, we can use the GLR test to decide about the
presence or absence of the PU. In this section, we derive
the GLR test in the different cases, in which some or all
of the parameters are unknown. Then, we investigate the
invariancy of the derived GLR tests under several groups of
transformations.
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A. Case 1: Unknown Channel Gains (GLRDI)

In this part, we assume that the SU has knowledge about the
noise and PU signal variances, but the channel gain vector h
is unknown. In this case, since the variance of noise is known,
the logarithm of PDF of observations Y under hypothesis
is computed as (3). Under hypothesis H; the channel gains
are unknown and in order to derive the GLR test, we first
maximize (4) with respect to h to find the ML estimation of
the channel gains. From (7), by setting %El(Y) = 0, we
have:

(oI + Bhh™)YY"h = vh, (17)

%’ g = % and v =
(-5 +hl?)o? (-5 +[h?)o?

——L——If we define A £ (aI+ Shh*), then since a
(53 +hl2)o?

and /3 are real positive numbers, the matrix A = oI + Shh?
is a full rank matrix and therefore it has an inverse. Using
matrix inversion lemma and multiplying both sides of (17) by

where «o

Al=La1d- %%IEHZ’)’ we obtain
1 v
—-YY"h = —A"'h
L L
v hh’
= —(I-————)h 18
7y ) (s

This obviously means that h is a eigenvector of R 2 LYYH,

i.e.,

Rh = )\h (19)

and A = £ (graime \d
eigenvalue of sample covariance matrix R = %YYH . From
(19), it is obvious that the ML estimation of the vector h is an
eigenvector of R. Now we must determine which eigenvectors
of R maximizes the likelihood function. We first normalize
the eigenvectors such that ||h||?> = 1. From Rh = \h and
the definition of R, we obtain |hZY||2 = LA|h|2 = LA.
Replacing this equation in (6) we obtain

) is a real number and the corresponding

> LA (20)
n 1)0—2

n

_ _Ltr(R) n

o2 (Z

L£1(Y)

W N
v+

— MLlnw—Lin(% +1) - LMIno?2.
a

3

Since the above function is an increasing function with respect
to A, the ML estimation h is the eigenvector corresponding
to the maximum eigenvalue of the matrix R which we denote
this vector by h, i.e.

Rh = Apasch, 1)
where, by assumption, we have ||F1|| = 1. By replacing the
above estimation in (20), we obtain:

tr(R Lmax
L) = 2B, (22)
0 (GE+ 1)o7

2
— MLlnw—Ln(% +1)— LMIno?2.
g,

n

From (3) and (22), the LLR function is equal to:

LLR = £1(Y) - Lo(Y)
L max 2
- 2/\7—[,111(0—;4—1). (23)
(& +1)o2 Tn

For decision making, we must compare the LLR in (23) to a
threshold which results in

LA max 2 Ha
(%) 2y =
(% + 1)o2 2" %
)\max Ha
Tourp1(Y) = —— 21, (24)
On Ho

2 2
where n = +[m + LIn(Z + 1)](Z + 1).

2
T

B. Case 2: Unknown Channel Gains and PU Variance
(GLRD2)

In this part, in addition to unknown channel gains, we
assume that the PU variance is also unknown. We maximize
(22) with respect to o2 to find the ML estimation of PU
variance o2. By setting %El(Y) = 0, we obtain

—~

02 = Amax — 0. (25)
We now replace (25) in (22), as
£y) = —pTB L P
g, (=4
—L 1n(A‘“;") — LM 1Ino?. (26)
On
From (3) and (26), the LLR function is equal to:
LLR = £L:i(Y)— Lo(Y)
- L?:me — Lln(A:;x) — L. (27)

n n

For decision making, the LLR function must be compared by
a threshold. We easily obtain:

Amax Amax 41
o2 - lIl( ) 2 -

n n  Ho

(28)

We notice that g(x) = 2 — In(x) is an increasing function for
x > 1. Under both Hy and H; hypotheses, the ratio of ’\;%
is greater than one with high probability [23] and hence we
can simplify the GLR detector as the following form:

N A1
TeLrp2(Y) = =5~ 2 1.

On Ho
Interestingly, the derived GLR detector (GLRD1) has the same
form as the detector given in (24), in which only the channel
gains are unknown (GLRDI1). So we can conclude that the
knowledge about the PU variance, when the channel gains are
unknown, does not lead to a better GLR detector. This is also
intuitively expected as this case is equivalent to the case that

the PU variance is one and the channel gain is oh.

(29)
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C. Case 3: Unknown Channel Gains and PU and Noise
Variance (GLRD3 or blind GLRD)

In the following, we derive the GLR detector when all of
the mentioned parameters are unknown. Up to know, we have
obtained the ML estimations of the channel gain vector h
and o2. In order to derive the GLR test, we maximize the
PDFs in (26) and (3) with respect to orfl and then form the
LR function. By maximizing (3) with respect to o2, we obtain
the ML estimation of noise variance under hypothesis H as
follows:

= tr(YYH)  tr(R)
. 2 = =
Ho: on ML M
and hence from (3) and (30), for PDF under hypothesis H,
we get:

(30)

ML ML
sup f(Y; Ho,05) = (ML)

~ ML" (3 1)
o (me)ML (tr(R))

Similarly under hypothesis H;,
52 L1(Y) = 0, we obtain

from (26) by setting

oz = Ml_l(tr(ﬁ)—)\max). (32)

From (21), (25) and (32), the ML estimations of unknown
parameters under #; are summarized as follows

~

7 = 57 (4 (R) — )
Hl . Ug = ﬁ (MAmax - tr(ﬁ)) )
h= Y

[Vinax]l

(33)

where vy,,x denotes the eigenvector corresponding to the
largest eigenvalue. Using the ML estimations in (33) leads
to the following PDF under hypothesis H;:

sup f(Y;Hi,h o2 02) =

i n? S

(34)

h,o7 02
(L(M _ 1))L(Mfl)LL
(We)ML()‘maX)L(tr(ﬁ) = Amax) LMD
From (31) and (34), the LR function is derived as:
sup  f(Y;Hi,h, 02, 02)

rYnrYs
(h,03,02)

sup F(Y;Ho)

LR(Y) =

(35)

(L(M—1)tM-D L
(7€) ML (Amax) E (br(R) = Amax) L —1)

(ML)ML
(Tre)NIL(tr(ﬁ))NIL
B (M _ 1)(M—1)L (tr(R))ML
= MML Aéax(tr(ﬁ) _ )\max)L(]VI—l)~
If we define p def t)‘r(—ﬁ") then above LR function can be written
as:
(M _ 1)(M—1)L 1 L
LR(Y) = .
) e \p— ) O

For decision making, (36) must be compared with a threshold
71, 1.e., We must compare

1 Ha

2 T2,

_—_— 37
A1) 67

1

MML L
r—nar-or 1
Let \; = Amax = A2 > --- > Ay denote the eigenvalues
of matrix R in descending order. It can be easily observed that

the supremum and infinimum of the expression p = t’\'%x) =
r

I;\,—lx are respectively 1 and 47, i.e., 77 < p < 1. Now since
the above LR is an increasing function of 4 in the interval
(ﬁ, 1), the GLR test in (37) can be simplified as:

where 75 = (

Lz (38)
p= T,
sz‘vil Ai ;0
where we have used the fact that tr(R) = Zgl Ai. As

another form, by manipulation of the above detector, we can
express the GLR detector as the following equivalent form:

H
Torrps(Y) = ]371 21 m, (39)
Zi:z i Ho
where 7 = 7.

D. Computational Complexity

The computational complexity of the proposed detectors
comes from two major operations: computation of sample
covariance matrix and eigenvalue decomposition of the covari-
ance matrix. Here we consider the computational complexity
of a trivial approach (which may be numerically non-efficient)
in which the largest root of the sample covariance matrix is
calculated. For the first part, since the covariance matrix is a
block Toeplitz and Hermitian, we need only to compute its
first block row. Hence M?L multiplications and M?(L — 1)
additions are required. For the second part, in general at most
O(M?3) multiplications and additions are needed. Thus the
total computational complexity is as follows :

M?(2L — 1) + O(M?) (40)

Note that the considered approaches for the calculations of the
above parameters are not necessarily the best ones, from com-
putational complexity aspect. For instance, the computational
complexity can be reduced by determining the dominant sin-
gular value of the observation matrix Y, instead of calculating
the the largest root of the sample covariance matrix. In practice
the number of temporal samples L is usually much larger than
the number of antennas M and the dominant term is the first
term. On the other hand, the ED needs M L multiplications
and M (L—1) additions and thus the computational complexity
of the proposed detectors is about M times that of the ED.

E. Invariancy of the GLR Detectors
In the following, we investigate the invariancy of the GLR

detectors derived in (39), (29) and (24) under two groups of
transformations namely orthogonal transformation and scale:

Go = {90l90(Y) =QY,vQ € C"*M Q7 Q =1}
Ga = {g4lga(Y) =dY,vd > 0}. (41)

The above transformations are groups, since they are closed,

associative, and contain the identity and inverse elements.
The invariancy of the GLR detector under orthogonal trans-

formation indicates that the proposed GLR detector has the
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same form if we use the frequency samples instead of temporal
samples. The reason is that taking FFT from the temporal
samples is equal to applying a unitary matrix transformation
to the temporal samples which is an orthogonal transformation.
Also invariancy under scale implies that the received samples
at the antennas can be amplified or attenuated during sensing
process.

In the following, we prove that for blind GLRD, the dis-
tribution of the observations and the parameter spaces remain
invariant under any compositions of the transformation groups
in (41), and the GLRDI is invariant only under orthogonal
transformation.

1) Orthogonal Transformation: under Hy, from Y ~
CN(0,021,), we get

90(Y) = QY ~ CN(0,QQ" o2 1x)

=CN(0,0%1y). (42)
under Hy, Y ~ CN(0,02hh + 521),) and thus we
get

90(Y) = QY ~ CN(0,02Qhh" Q" + QQ"o71,)
= CN(0, 020D + 621). (43)

where h’ = Qh. Since the channel gain h is unknown,
the transformed channel gain h’ is also unknown with
the same unity norm ||h’[|? = [|Qh||? = h’ Q7 Qh =
h”h = ||h|2. Hence the distribution family of the
transformed signal is unchanged. The above discussion
is valid for both GLRD1 and blind GLRD. As an-
other approach, we know from linear algebra theory
that the orthogonal transformation does not change the
eigenvalues of a given matrix. Thus, under orthogonal
transformation, the decision statistics of both GLR de-
tectors remain unchanged and they are invariant under
orthogonal transformation.

2) Scale: For blind GLR under Hq,
CN(0,02hh* + 21)/) we obtain

from Y ~

9a(Y) =dY ~ CN(0,d*0?hh? + d?021y,).  (44)
Since 02 and o2 are unknown, the distribution family
of the transformed signal is not changed. Under the
null hypothesis, the proof is similar. It is obvious that
the GLRD1 is not invariant under scale transformation.
In fact, by scaling the observation matrix, all of the
eigenvalues are scaled and hence their ratio will be
constant for blind GLRD.

IV. ANALYTICAL PERFORMANCE EVALUATION

In this section we evaluate the performance of the GLR
detectors in terms of detection probability, Py, and false alarm
probability, Pr,. For computing the detection probability, we
need to compute the statistics of the principal components
when the PU signal is present. Also for the false alarm
probability, we need to determine the behavior of eigenvalues
under null hypothesis, i.e., Ho. We evaluate these probabilities
in the following parts.

A. False Alarm Probability

In this part, we first introduce a statistical resultA for the
eigenvalues of the sample correlation matrix , i.e., R, under
hypothesis Hy. We then use the result for the calculation of
P,

Lemma 1: The normalized largest eigenvalue of a complex
correlation matrix, i.e., A1/ o2, in null case is distributed as

no

Tracy-Widom distribution of order 2 [24], i.e,

M/oZ — prm

— Wy ~TW2, (45)
OLM
where the limit is in distribution, and
B 2
ULy = (1 +4/ f) (46)
1 M 1 1 \Y3

o = — |(14+4/— (—+—) N CY
VI ( VT ) vt o

For the analytical formula of 7T'Wy refer to [24], and for the
tables of its CDF refer to [25].

In the following parts, we assume that the number of
antennas, i.e., M, and received sample, i.e., L, are large
enough and using (45), we compute the false alarm probability
Ps, for different GLR detectors derived in parts IV-B1 and
1V-B2.

‘We note that the detector derived in (29) is the same as (24)
and thus they have the same performance.

1) GLRDI (or GLRD2): In this case from (24) and (45),
we have:

Pr, = P[TeLroi(Y) > n|Ho)
= P[\i/op > nlHo)

A /o2 — _
_ P 1/00 — LM T ,ULM‘HO]
OLM LM
= 11— Pryo(LEEM) (48)

OLM

where Fryo(z) is the CDF of Tracy-Widom distribution of
order 2. Now for a given F%,, the threshold can be easily
obtained as:

2
B M 1 (VL +VM)*3
”‘(H\/f) T I vinis Fowall— P, (49)

where Fii5(.) denotes the inverse CDF of Tracy-Widom
distribution of order 2. We note that, unlike the optimum
detector, the threshold does not depend on noise variance and
channel gains, and can be pre-computed based only on M, L
and FPg,.

2) GLRD3 (Blind GLRD): In this case, since the distri-
bution of largest eigenvalue is known, from (39) we must
compute the distribution of the summation of other eigenvalues
under hypothesis Ho. Under Hp, since we have assumed
that the number of antennas and samples are large enough,
the summation ﬁ Zﬁz A; is approximately constant and
equals to the variance of noise[26], i.e.,

1 M
. e 2
Ho: 37— ;A o, (50)
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and we conclude that Zf\ig \i = (M —1)02. Therefore, under
hypothesis H the decision statistics can be written as the
following form:

A 1 N

7‘[0 : y ~ — .
Ziv; N M-—1loj

Thus from (45), the false alarm probability can be easily

calculated as:
n— KL M
M—1
P =1—Frwe | —— | -
M—1

(S

(52)

and for a given Py,, the threshold can be easily obtained as:

2
(041D
M—-1
L1 (VL + \/M)‘l/?)F,1 a
L(M—1) (VIM)Y/3 ~TW2
Again, we note that, the threshold does not depends on

noise variance and channel gains and can be pre-computed
based only on M, L and F,.

- (53)

— Pp).

B. Detection Probability

Letly 2 lp > -+ > Iy and Ay > Ay > -+ > Ay
denote the eigenvalues, in the descending order, of the actual
covariance matrix R and the sample covariance matrix R
defined in (4) and (18), respectively. Under hypothesis #;, we
have the following lemma for the distribution of the largest
eigenvalue:

Lemma 2: Under hypothesis 11, the largest eigenvalue, A1,
of a sample matrix has the normal distribution as follows [23]:

L(ly —02) ’ L> .
Under hypothesis 1, from (4), we have R = oghhH +
021 and det(R) = (02||h[|? + 02)(c2)M =1, Thus, we can
conclude that Iy = o2||h||*+02 andly = l3 = -+ = lpy = 2.
By using the received SNR definition, i.e., 7, in (16), (54) can
be rewritten as:

A1 M—-1\ (1+9)°
5o~ N<(1+v)<1+ = ) s )(55)

In the following, by using (55), we compute the detection
probability, i.e., P; for different scenarios.

1) GLRDI (or GLRD?2): In this case, from (24) and (55),
the probability of detection can be computed as follows:

Ao~ N<l1+ (54)

Py = P[TeLrp1(Y) > n|H4]
—(1+7) (14 22)
- 1y
VI
VI M-
_ 56
Q(H7 \/_7 f) (56)

The above detection probability is conditional on instan-
taneous SNR, i.e., 7. In the fading channel, the average
probability of detection can be computed by averaging over
distribution, i.e., f,(x), as follows:

7= | P (57)
0
> \/Zn M —
= = - \/_

| e (1 - VI (@)
For instance, in Rayleigh fading channel, f,(z) = %6_%
and the average probability can be computed by numerical
integration.

2) GLRD3 (Blind GLRD): Having the largest eigenvalue
distribution, from (39), we must compute the distribution of
the summation of the other eigenvalues. We have the following
result on the summation of the other eigenvalues:

Lemma 3: Under hypothesis #H;, for the averaged summa-
tion of eigenvalues except the largest one, we have [26]:

ag, ll
e
Then, we obtain:
M
1
SN A (M- 1)1 - =)o, (59)
i=2 Ly

where v is defined in (16). From (55) and (59), the decision
statistic will have a Gaussian distribution as follows:

A1
H, S (60)
N (1+7)(1+ 224 (1+7)?
(- (- 52) LM — 120 - 27 )

So, the detection probability can be calculated as:

WIM-1)1-%2) L o
T 17 )

and in fading channel, the average detection probability can
be computed by averaging the above probability over SNR,

ie., 7.
Fd pu—

/"OQ (n\/Z(M—l)( - )
0 1+z

Pi=Q

(62)

L
-1 +\/];1> fy(z)dx
Lx

V. SIMULATION RESULTS AND DISCUSSION

In this section, we present some numerical results to evalu-
ate the performance of the proposed detectors. Figure 2 depicts
the probability of missed detection P, of the optimal detector,
the proposed GLR detectors and the energy detector versus
SNR at a false alarm rate of P, = 1072, L = 16 and
M = 4 . In order to determine the threshold for a given
false alarm probability, we have generated the decision statistic
randomly according to its distributions for 10% independent
trials (in absence of PU signal) and chosen the detection
threshold as 100, percentile of the generated data, i.e., for
Pr, = 1073, 100 x 1072 = 0.1% of the generated decision
statistic (out of 10%) are above the determined threshold. As
can be observed, by increasing the SNR the performance of
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Probability of missed detection, P,,

™ i
10 10 =5 0 R 5 10 15
SNRip

Fig. 2. The probability of missed detection of the GLR detectors, ED and
optimal detector versus SNR for Py, = 1072, M = 4 and L = 16.

i

Probability of missed detection, P,
|

— Optimal detector
-=GLRD1

—-ED
_s||~e=Blind GLRD

7 3 =) 1 0

10 10

1
Probability of false alarm, Py,

Fig. 3. The complementary ROC (P, vs. Pg,) of different detectors in
AWGN channel, for SNR=5dB, M =2 and L = 8.

the detectors improves and the ED which knows the exact
value of noise variance performs only better than the blind
GLRD. Also, the performance of the GLRDI is better than
the ED and blind GLRD. Note that the GLRD1 and GLRD2
derived in Sections III-A and III-B are identical.

Figure 3 show the complementary ROC (Receiver Operating
characteristics) or the probability of missed detection, i.e. P,
versus probability of the false alarm, i.e., P, for different
detectors in AWGN channel for SNR = 5 dB, M = 2,
and L = 8. Also, Figures 4, 5, and 6 show these curves
for average SNR, 7 = 5 dB and L = 8, respectively, for
M =2, M =4 and M = 6 in Rayleigh fading channel. As
can be observed, the performance of all detectors degrades
slightly in fading channel compared with AWGN channel.
One approach to improve the performance in the fading
channels, is to use collaborative spectrum sensing [3], [4],
[27]. By collaboration among the SUs, the deleterious effect of
fading can be mitigated and a more reliable spectrum sensing
can be achieved. In fact, in collaborative spectrum sensing,
the SUs use the available spatial diversity to improve their
performance.

As can be seen from Figures 4,5,6 by using more antennas,
like in a collaborative spectrum sensing, the performance
improves due to the spatial diversity provided.

Our further simulation results, which have not provided
here, indicates that by increasing the number of samples, i.e.,

5

L
L

5

Probability of missed detection, P,

— Optimal detecto
-+ GLRD1

at?
_s|[—e=DBlind detector
i 3 2 1 0

1 10 10
Probability of false alarm, Py,

Fig. 4. The complementary ROC of different detectors in Rayleigh fading
channel, for average SNR =5 dB, M =2 and L = 8.

Probability of missed deetection, P,

— Optimal detector
-+ GLRD1

=+-ED
—e-Blind GLRD
4 = = -1 0

10 10 1
Probability of fale alarm, Py,

Fig. 5. The complementary ROC of different detectors in Rayleigh fading
channel, for average SNR =4 dB, M =4 and L = 8.

L, the performance improves. Note that, we can not increase L
arbitrarily since L determines the acquisition time (the waiting
time-lag before a decision can be made). Thus in practice, we
have to make a trade-off between P, (the spectrum usage
efficiency), P,, (PU interference protection level) and L (the
acquisition time). However as expected, the simulation results
indicate that increasing the number of antennas, i.e., M,
compared to increasing the number of samples, i.e., L, has
more substantial effect on the performance improvement of
the different detectors in fading channels.

In Figure 7, we compare the proposed GLR detectors
with the optimal detector and ED under noise variance
mismatch of Q; dB. For noise mismatch, it is assumed
that |1Olog10(g—§)| = agp, where G2 is the actual noise
variance, and «ag4p, defined as noise uncertaincy factor, is
considered as a uniform distribution variable in the interval
aqp ~ U[—0.5,0.5]. In practice, the noise uncertaincy factor,
i.e., agp, in receiver is normally 1-2 dB which due to the
existence of interference can be much higher [10], [15]. As can
be realized, the GLR detectors are more robust to the noise un-
certaincy than the optimal detector and ED, and in fact under
noise variance mismatch, the optimal detector performs similar
to the GLRD1. Also, the blind GLRD performs slightly better
than the GLRD1 in which only the variance of noise is known.
Under a greater noise uncertaincy factor, the performance of
ED and optimal detectors degrades more substantially and the
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Fig. 6. The complementary ROC of different detectors in Rayleigh fading
channel, for average SNR =5 dB, M =6 and L = 8.
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=e-Blind GLRD
— Optimal detector
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107
Probability of false alarm, Py,

Fig. 7. The effect of noise variance mismatch on the performance of the
ED and GLR and optimal detectors, for agg=0.5, SNR = 3dB, L = 16
and M = 4.

GLR detectors present a better performance. From this figure
and our further simulations, we conclude that the optimal
detector can outperform the GLR detectors provided that the
optimal detector knows the noise variance accurately enough.
However in practice, there are uncertainty about the noise
variance which under these unavoidable circumstances, the
blind GLRD outperforms the optimal detector and ED. In Fig-
ure 8, we evaluate the performance of the proposed detectors
in a typical practical applications. In IEEE 802.22 standard
(WRAN), the CRs need to detect the presence or absence of
wireless microphone, and digital and analog TV signals which
in north America these signals are respectively FM, NTSC,
and ATSC signals[28]. This figure illustrates the performance
of blind GLR, GLRDI, cyclostationarity based detecor, and
ED, when the PU signals are considered as captured DTV
signals and the parameters are set as aggp = 0.5, SNR =
—10dB, L = 4096, and M = 4. For simulation, the captured
DTV signal samples have been taken from [29]. As can be
seen, in this case even thought the PU signal is not a Gaussian
signal, the performance of the proposed detectors, i.e., blind
detector and GLRD1, are acceptable, and the blind detector
performs like and even slightly better that the cyclostationarity
based detector. We note that the cyclostionarity based detector
uses the available information of DTV signal such as time
duration and waveform and cyclic frequencies, and is highly

—Cyclostationary detector
—=GLRD1

=e—Blind detector

—-ED

107F

Probability of missed detection, P,

- 3

0°
Probability of false alarm, Py,

Fig. 8. The Performance of Blind detector, GLRDI1, Energy detector (ED)
and cyclostationarity based detector, for aqp=0.5, SNR = —10dB, L =
4096, and M = 4.
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4
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—GLRDI, analytical
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4 -3 -2 -1 0

10° 10 10 10 10
Probability of false alarm, Py,

Probability of missed detection, P,

Fig. 9. Comparison between simulation and analytical performance of GLR
detectors, for SNR= 3 dB, M = 8 and L = 32.

computationally complex for practical implementation. On the
other hand, as mentioned before, the blind detector can be
implemented easily and does not use any information of PU
signal. Our further simulations indicate similar behaviors for
the other considered IEEE 802.22 potential signals, i.e., for
FM wireless microphone and analog TV signals. In Figure
9, we have presented the performance evaluation of the GLR
detectors based on both analytical and simulations, for SNR
=3 dB, M = 8, and L = 32. As can be observed, the
simulation results well confirm the analytical derivations. It
is notable that because of asymptotic approximations used in
deriving analytical results, the simulation and analytical results
will well coincide provided that the number of samples and
antennas are large enough. In fact, the available gap between
the analytical and the simulation results will decrease by
increasing the number of samples or the number of antennas.

VI. CONCLUSION

In this paper, we considered the spectrum sensing for the
CRs equipped with multiple antenna receivers. We derived
the optimal detector which needs to know the variances of the
PU signal and noise as well as the channel gains. We also
presented the GLR detectors in which some or all of these
parameters are unknown. We evaluated the performance of
the proposed detectors in terms of false alarm and detection
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probabilities. The simulation results revealed that the proposed
GLR detectors perform better than the ED and almost identical
to the optimal detector under noise variance mismatch.
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